Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2317222121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557175

RESUMO

Antigenic drift of SARS-CoV-2 is typically defined by mutations in the N-terminal domain and receptor binding domain of spike protein. In contrast, whether antigenic drift occurs in the S2 domain remains largely elusive. Here, we perform a deep mutational scanning experiment to identify S2 mutations that affect binding of SARS-CoV-2 spike to three S2 apex public antibodies. Our results indicate that spatially diverse mutations, including D950N and Q954H, which are observed in Delta and Omicron variants, respectively, weaken the binding of spike to these antibodies. Although S2 apex antibodies are known to be nonneutralizing, we show that they confer protection in vivo through Fc-mediated effector functions. Overall, this study indicates that the S2 domain of SARS-CoV-2 spike can undergo antigenic drift, which represents a potential challenge for the development of more universal coronavirus vaccines.


Assuntos
Deriva e Deslocamento Antigênicos , COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais
2.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456504

RESUMO

SARS-CoV-2 spike-based vaccines are used to control the COVID-19 pandemic. However, emerging variants have become resistant to antibody neutralization and further mutations may lead to full resistance. We tested whether T cells alone could provide protection without antibodies. We designed a T cell-based vaccine in which SARS-CoV-2 spike sequences were rearranged and attached to ubiquitin. Immunization of mice with the vaccine induced no specific antibodies, but strong specific T cell responses. We challenged mice with SARS-CoV-2 wild-type strain or an Omicron variant after the immunization and monitored survival or viral titers in the lungs. The mice were significantly protected against death and weight loss caused by the SARS-CoV-2 wild-type strain, and the viral titers in the lungs of mice challenged with the SARS-CoV-2 wild-type strain or the Omicron variant were significantly reduced. Importantly, depletion of CD4+ or CD8+ T cells led to significant loss of the protection. Our analyses of spike protein sequences of the variants indicated that fewer than one-third presented by dominant HLA alleles were mutated and that most of the mutated epitopes were in the subunit 1 region. As the subunit 2 region is conservative, the vaccines targeting spike protein are expected to protect against future variants due to the T cell responses.


Assuntos
COVID-19 , Vacinas , Animais , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos , Vacinas contra COVID-19
3.
iScience ; 26(10): 108033, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37822493

RESUMO

Mucosal COVID-19 vaccines are needed to block SARS-CoV-2 infection at the mucosal site. Intranasal delivery of a glycosylated Delta variant receptor-binding domain (Delta-RBD) mucosal vaccine elicited potent and balanced systemic antibody titers comparable to those induced by the intramuscular injection of the same vaccine or Omicron-S subunit vaccine, as well as high mucosal IgA antibody responses. It elicited broadly neutralizing antibodies against the original SARS-CoV-2 strain, Delta and Omicron BA1/BA2 variants, completely protecting transgenic mice from lethal challenge with a Delta variant, including complete absence of weight loss. Of note, intramuscular priming with the Omicron-S protein followed by intranasal boosting with the Delta-RBD protein improved the vaccine's ability to generate broad-spectrum neutralizing antibodies against recent BA5 and XBB Omicron variants. Overall, this vaccine has the potential to prevent the SARS-CoV-2 infection of the respiratory mucosa, while the i.m. priming and i.n. boosting vaccination strategy may offer protection against known and emerging SARS-CoV-2 variants.

4.
iScience ; 25(12): 105690, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36471872

RESUMO

SARS-CoV-2 variants of concern (VOCs) have shown resistance to vaccines targeting the original virus strain. An mRNA vaccine encoding the spike protein of Omicron BA1 (BA1-S-mRNA) was designed, and its neutralizing activity, with or without the original receptor-binding domain (RBD)-mRNA, was tested against SARS-CoV-2 VOCs. First-dose of BA1-S-mRNA followed by two-boosts of RBD-mRNA elicited potent neutralizing antibodies (nAbs) against pseudotyped and authentic original SARS-CoV-2; pseudotyped Omicron BA1, BA2, BA2.12.1 and BA5 subvariants, and Alpha, Beta, Gamma and Delta VOCs; authentic Omicron BA1 subvariant and Delta VOC. By contrast, other vaccination strategies, including RBD-mRNA first-dose plus BA1-S-mRNA two-boosts, RBD-mRNA or BA1-S-mRNA three-doses, or their combinations, failed to elicit high nAb titers against all of these viruses. Overall, this vaccination strategy was effective for inducing broadly and potent nAbs against multiple SARS-CoV-2 VOCs, particularly Omicron BA5, and may guide the rational design of next-generation mRNA vaccines with greater efficacy against future variants.

5.
NPJ Vaccines ; 7(1): 169, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535987

RESUMO

The SARS-CoV-2 Omicron variant harbors more than 30 mutations in its spike (S) protein. Circulating Omicron subvariants, particularly BA5 and other variants of concern (VOCs), show increased resistance to COVID-19 vaccines that target the original S protein, calling for an urgent need for effective vaccines to prevent multiple SARS-CoV-2 VOCs. Here, we evaluated the neutralizing activity and protection conferred by a BA1-S subunit vaccine when combined with or used as booster doses after, administration of wild-type S protein (WT-S). A WT-S/BA1-S cocktail, or WT-S prime and BA1-S boost, induced significantly higher neutralizing antibodies against pseudotyped Omicron BA1, BA2, BA2.12.1, and BA5 subvariants, and similar or higher neutralizing antibodies against the original SARS-CoV-2, than the WT-S protein alone. The WT-S/BA1-S cocktail also elicited higher or significantly higher neutralizing antibodies than the WT-S-prime-BA1-S boost, WT-S alone, or BA1-S alone against pseudotyped SARS-CoV-2 Alpha, Beta, Gamma, and Delta VOCs, and SARS-CoV, a closely related beta-coronavirus using the same receptor as SARS-CoV-2 for viral entry. By contrast, WT-S or BA1-S alone failed to induce potent neutralizing antibodies against all these viruses. Similar to the WT-S-prime-BA1-S boost, the WT-S/BA1-S cocktail completely protected mice against the lethal challenge of a Delta variant with negligible weight loss. Thus, we have identified an effective vaccination strategy that elicits potent, broadly, and durable neutralizing antibodies against circulating SARS-CoV-2 Omicron subvariants, other VOCs, original SARS-CoV-2, and SARS-CoV. These results will provide useful guidance for developing efficacious vaccines that inhibit current and future SARS-CoV-2 variants to control the COVID-19 pandemic.

6.
J Virol ; 96(17): e0011822, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35972290

RESUMO

SARS-CoV-2 has mutated frequently since its first emergence in 2019. Numerous variants, including the currently emerging Omicron variant, have demonstrated high transmissibility or increased disease severity, posing serious threats to global public health. This study describes the identification of an immunodominant non-neutralizing epitope on SARS-CoV-2 receptor-binding domain (RBD). A subunit vaccine against this mutant RBD, constructed by masking this epitope with a glycan probe, did not significantly affect RBD's receptor-binding affinity or antibody-binding affinity, or its ability to induce antibody production. However, this vaccine enhanced the neutralizing activity of this RBD and its protective efficacy in immunized mice. Specifically, this vaccine elicited significantly higher-titer neutralizing antibodies than the prototypic RBD protein against Alpha (B.1.1.7 lineage), Beta (B.1.351 lineage), Gamma (P.1 lineage), and Epsilon (B.1.427 or B.1.429 lineage) variant pseudoviruses containing single or combined mutations in the spike (S) protein, albeit the neutralizing antibody titers against some variants were slightly lower than against original SARS-CoV-2. This vaccine also significantly improved the neutralizing activity of the prototypic RBD against pseudotyped and authentic Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants, although the neutralizing antibody titers were lower than against original SARS-CoV-2. In contrast to the prototypic RBD, the mutant RBD completely protected human ACE2 (hACE2)-transgenic mice from lethal challenge with a prototype SARS-CoV-2 strain and a Delta variant without weight loss. Overall, these findings indicate that this RBD vaccine has broad-spectrum activity against multiple SARS-CoV-2 variants, as well as the potential to be effective and have improved efficacy against Omicron and other pandemic variants. IMPORTANCE Several SARS-CoV-2 variants have shown increased transmissibility, calling for a need to develop effective vaccines with broadly neutralizing activity against multiple variants. This study identified a non-neutralizing epitope on the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, and further shielded it with a glycan probe. A subunit vaccine based on this mutant RBD significantly enhanced the ability of prototypic RBD against multiple SARS-CoV-2 variants, including the Delta and Omicron strains, although the neutralizing antibody titers against some of these variants were lower than those against original SARS-CoV-2. This mutant vaccine also enhanced the protective efficacy of the prototypic RBD vaccine against SARS-CoV-2 infection in immunized animals. In conclusion, this study identified an engineered RBD vaccine against Omicron and other SARS-CoV-2 variants that induced stronger neutralizing antibodies and protection than the original RBD vaccine. It also highlights the need to improve the effectiveness of current COVID-19 vaccines to prevent pandemic SARS-CoV-2 variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Epitopos , Glicosilação , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Vacinas de Subunidades/imunologia
7.
bioRxiv ; 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32817939

RESUMO

The ongoing COVID-19 pandemic is associated with substantial morbidity and mortality. While much has been learned in the first months of the pandemic, many features of COVID-19 pathogenesis remain to be determined. For example, anosmia is a common presentation and many patients with this finding show no or only minor respiratory signs. Studies in animals experimentally infected with SARS-CoV-2, the cause of COVID-19, provide opportunities to study aspects of the disease not easily investigated in human patients. COVID-19 severity ranges from asymptomatic to lethal. Most experimental infections provide insights into mild disease. Here, using K18-hACE2 mice that we originally developed for SARS studies, we show that infection with SARS-CoV-2 causes severe disease in the lung, and in some mice, the brain. Evidence of thrombosis and vasculitis was detected in mice with severe pneumonia. Further, we show that infusion of convalescent plasma (CP) from a recovered COVID-19 patient provided protection against lethal disease. Mice developed anosmia at early times after infection. Notably, while treatment with CP prevented significant clinical disease, it did not prevent anosmia. Thus K18-hACE2 mice provide a useful model for studying the pathological underpinnings of both mild and lethal COVID-19 and for assessing therapeutic interventions.

8.
Front Microbiol ; 9: 1489, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034380

RESUMO

Chandipura Virus (CHPV) a negative-stranded RNA virus belonging to the Rhabdoviridae family, has been previously reported to bring about neuronal apoptosis by stimulating oxidative stress. Our in silico data suggested the involvement of Angiotensin II in intracellular Ca2+ secretion within CHPV infected cells that further lead to enhancement of ROS level and mitochondrial dysfunction. ROS is also known to phosphorylate p38 that leads to neuronal apoptosis through FasL-FADD pathway during CHPV infection. Minocycline a broad-spectrum antibiotic well-known for its anti-oxidative and anti-inflammatory role was used in the present study to investigate its efficacy against CHPV. The results obtained from the present study showed minocycline to be effective in mitigating the levels of cytoplasmic Ca2+, ROS, phosphorylation of p38 molecules and hence cellular apoptosis. Thus minocycline apart from being an anti-inflammatory and anti-oxidative agent, our study showed that minocycline has an additional Ca2+ chelation activity.

10.
Med J Aust ; 192(7): 407-12, 2010 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-20367591

RESUMO

Dabigatran etexilate was recently approved by the Therapeutic Goods Administration for thromboprophylactic use in adults undergoing elective total hip or knee replacement. Dabigatran etexilate is the prodrug of the active moiety dabigatran, an orally active agent that could replace enoxaparin in some clinical indications. Dabigatran is a direct thrombin inhibitor; it has stable, predictable pharmacokinetics and does not require routine monitoring. Pooled efficacy data from large-scale phase III clinical trials of dabigatran use in orthopaedic thromboprophylaxis have shown non-inferiority to enoxaparin, with total venous thromboembolism results of 3.8% for dabigatran etexilate 150 mg and 3.0% for dabigatran etexilate 220 mg, compared with 3.3% for enoxaparin. Pooled safety results for dabigatran are similar to those for enoxaparin, with major bleeding rates of 1.1% for dabigatran etexilate 150 mg and 1.4% for dabigatran etexilate 220 mg, compared with 1.4% for enoxaparin. Dabigatran failed to demonstrate non-inferiority compared with enoxaparin 30 mg twice daily for orthopaedic thromboprophylaxis. Issues relating to the use of dabigatran include its lack of antidote, limited application in renal disease, and interaction with drugs such as amiodarone and verapamil. Several trials investigating the use of dabigatran for other indications, such as stroke prevention in atrial fibrillation and acute coronary syndromes, are underway. Given its safety profile, efficacy, oral bioavailability and stable pharmacokinetic properties, dabigatran may be a viable alternative to enoxaparin for thromboprophylaxis in orthopaedic surgery.


Assuntos
Benzimidazóis/uso terapêutico , Piridinas/uso terapêutico , Trombina/antagonistas & inibidores , Adulto , Benzimidazóis/efeitos adversos , Benzimidazóis/farmacocinética , Dabigatrana , Interações Medicamentosas , Humanos , Piridinas/efeitos adversos , Piridinas/farmacocinética , Trombose/prevenção & controle
11.
Med J Aust ; 190(7): 379-83, 2009 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-19351313

RESUMO

Warfarin and heparin are the traditional mainstay anticoagulant therapies for treating thromboembolic disease. These drugs, with a documented history of utility, also have inherent difficulties in usage; in particular, the complicated monitoring and numerous drug-drug interactions of warfarin, and the need for parenteral administration of heparins. New agents have recently emerged that target specific elements of the clotting pathway. Rivaroxaban, which inhibits activated factor X (Xa), is currently in clinical trials and is the most advanced factor Xa inhibitor. The drug offers once-daily oral dosing, with no need for injections, dose titration, or frequent blood tests to monitor the international normalised ratio. It has a rapid onset of action and, although there is no specific antidote, it has a short plasma elimination half-life (about 5-9 hours). Evidence from recently published large-scale phase III clinical trials shows rivaroxaban to be superior to enoxaparin for prophylaxis of venous thromboembolism after major orthopaedic surgery. Studies have shown rivaroxaban to have a sound safety profile, with an incidence of bleeding similar to enoxaparin in phase III clinical trials. Few side effects and drug-drug interactions between rivaroxaban and common medications have been found thus far, although some interactions with potent cytochrome P450 3A4 inhibitors have been observed. It is hoped that rivaroxaban may be used as a first-line anticoagulant for prophylaxis of venous thromboembolic disease in postsurgical patients.


Assuntos
Anticoagulantes/farmacologia , Inibidores do Fator Xa , Morfolinas/farmacologia , Tiofenos/farmacologia , Administração Oral , Anticoagulantes/administração & dosagem , Anticoagulantes/efeitos adversos , Interações Medicamentosas , Humanos , Morfolinas/administração & dosagem , Morfolinas/efeitos adversos , Embolia Pulmonar/prevenção & controle , Rivaroxabana , Tiofenos/administração & dosagem , Tiofenos/efeitos adversos , Trombose Venosa/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...